

SYNTHESIS AND ANTIVIRAL ACTIVITY OF ACYCLIC NUCLEOSIDE ANALOGUES OF 5-METHOXYMETHYL-6-METHYLURACIL AND 4-ALKYLAMINO-5-METHOXYMETHYL-6-METHYL-2(1H)-PYRIMIDINONES

Sunita BHAT*

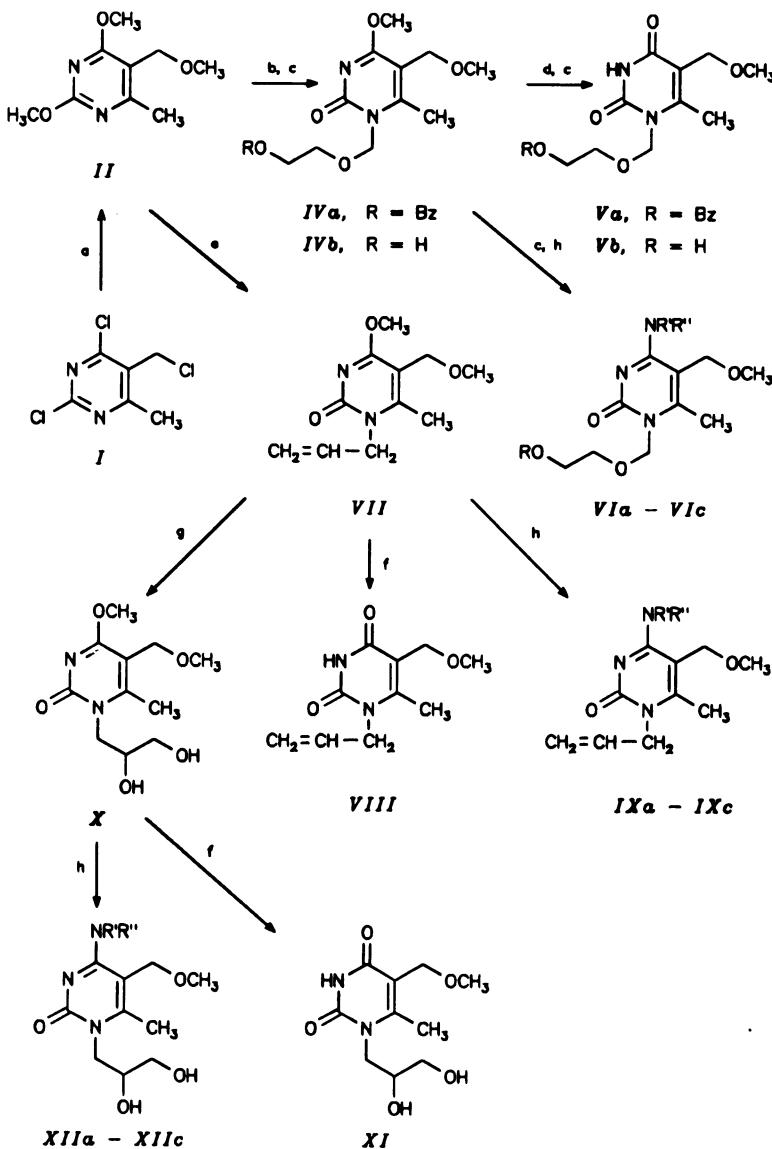
Department of Medicinal Chemistry,
Central Drug Research Institute, Lucknow-226001, India

Received May 26, 1992

Accepted February 28, 1993

The uracil derivatives 1-(2-hydroxyethoxymethyl/allyl/2,3-dihydroxypropyl)-5-methoxymethyl-6-methyluracils (*Vb*, *VIII*, *XI*) and 4-alkylamino-1-(2-hydroxyethoxymethyl/allyl/2,3-dihydroxypropyl)-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*VIa* – *VIc*, *IXa* – *IXc*, *XIIa* – *XIIc*) were synthesized from versatile intermediates 1-(2-benzoyloxyethoxymethyl/allyl/2,3-dihydroxypropyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*IVa*, *VII*, *X*), respectively. The compounds *IVb*, *Vb*, *VIa* – *VIc*, *VIII*, *IXa* – *IXc*, *XIIa* – *XIIc* were evaluated against Ranikhet disease virus (RDV) at the dose of (0.1 µg/ml); compounds *VIa*, *VIb*, *IXa*, *XIIb* showed 57, 100, 40, 80% inhibition, respectively.

Considerable attention has been paid to the novel group of nucleoside and nucleotide analogues, in which the sugar moiety is replaced by an acyclic chain. This has resulted in a number of interesting compounds. The most important antiviral drugs discovered are the acyclic analogues of guanosine, 9-(2-hydroxyethoxymethyl)guanine¹ (ACV) active against herpesvirus, and 9-(*S*)-(2,3-dihydroxypropyl)adenine² (DHPA) active against both DNA and RNA viruses. It has been found that a number of acyclic nucleosides of 5-benzyluracil³ are specific and fairly potent inhibitor of uridine phosphorylase. Some 1-substituted uracils containing additional substituents at 5,6-position have also been found to be potent inhibitors of thymidine phosphorylase⁴.


As a part of our programme of evaluating acyclic nucleosides⁵ we report in this communication the synthesis and antiviral activity of 1-(2-hydroxyethoxymethyl)-5-methoxymethyl-6-methyluracil (*Vb*), 1-(2,3-dihydroxypropyl)-5-methoxymethyl-6-methyluracil (*XI*), 1-(2-hydroxyethoxymethyl-5-methoxymethyl-6-methylcytosine

* Present address: Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, U.S.A.

(VIa) and 1-(2,3-dihydroxypropyl)-5-methoxymethyl-6-methylcytosine (XIIa) and their analogues (see Scheme 1).

2,4-Dimethoxy-5-methoxymethyl-6-methylpyrimidine (II) was prepared by treatment of 5-chloromethyl-2,4-dichloro-6-methylpyrimidine⁶ (I) with sodium methoxide in methanol in 73% yield. The dichloropyrimidine I was obtained in three steps from 6-methyluracil by the literature procedure⁷. Reaction of the 2,4-dimethoxy-5-methoxymethyl-6-methylpyrimidine (II) with 2-benzoyloxy-1-chloromethoxyethane⁸ (III) or allyl bromide by modified Hilbert-Johnson procedure⁹ afforded versatile intermediates 1-(2-benzoyloxyethoxymethyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (IVa) and 1-allyl-4-methoxy-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (VII). Treatment of IVa with hydrogen chloride¹⁰ in chloroform gave the corresponding protected 5-methoxymethyl-6-methyluracil derivative (Va). Deprotection of the IVa and Va with methanolic ammonia furnished 1-(2-hydroxyethoxymethyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (IVb) and 1-(2-hydroxyethoxymethyl)-5-methoxymethyl-6-methyluracil (Vb), respectively. Hydroxylation of the compound VII with sodium chlorate and osmium tetroxide¹¹ in aqueous methanol afforded racemic diol, 1-(2,3-dihydroxypropyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (X). Demethylation of VII and X with aqueous sodium hydroxide gave uracil derivatives VIII and XI. The site of glycosylation was confirmed to be N-1 by direct comparison of the UV spectrum of Vb (λ_{max} (MeOH): 210, 265 nm; (MeOH + NaOH): 202, 264 nm) with the UV spectrum of the 5,6-dimethyluridine¹² (λ_{max} (pH 1 – 4): 268 nm; λ_{max} (pH 14): 271 nm) which in turn resemble to the 1-methyluracil¹³. Amination of IVa, VII and X with methanolic ammonia in steel bomb afforded the corresponding cytosine analogues VIa, IXa and XIIa, respectively. Compounds IVa, VII and X were also treated with methylamine or ethylamine to determine if alkyl substitution on the 4-amino group would have any effect on the antiviral activity. Thus, 4-alkylamino-1-(2-hydroxyethoxymethyl)-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (VIb and VIc), 1-allyl-4-alkylamino-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (IXb and IXc) and 4-alkylamino-1-(2,3-dihydroxypropyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1H)-pyrimidinone (XIIb and XIIc) were synthesized in good yields, by the reaction of the VIa, VII and X with methylamine and ethylamine.

The compounds IVb, Vb, VIa – VIc, VIII, IXa – IXc, XI, XIIa – XIIc were evaluated for antiviral activity against Ranikhet disease virus (RDV) in chorio-allantoic membrane (CAM) cultures at the dose of 0.1 µg/culture, 0.064 HA/ml by the method described earlier¹⁴. The compounds VIa, VIb, IXa and XIIb showed 57, 100, 40, and 80% inhibition, respectively. The remaining compounds were found to exhibit either low order of activity or were inactive.

a NaOMe , MeOH ; b $\text{BzOCH}_2\text{CH}_2\text{OCH}_2\text{Cl}$ (*III*), CH_2Cl_2 , Na_2CO_3 ; c MeOH-NH_3 ;

d CHCl_3 , HCl ; e $\text{CH}_2=\text{CHCH}_2\text{Br}$, CH_2Cl_2 , Na_2CO_3 ; f aq. NaOH ;

g aq. NaOH , NaClO_3 , OsO_4 ; h $\text{NHR}'\text{R}''$.

In formulae *VI*, *IX*, *XII* : a, $\text{R}' = \text{R}'' = \text{H}$; b, $\text{R}' = \text{H}$, $\text{R}'' = \text{CH}_3$;

c, $\text{R}' = \text{H}$, $\text{R}'' = \text{C}_2\text{H}_5$

SCHEME 1

EXPERIMENTAL

Melting points are uncorrected. Compounds were routinely checked for their homogeneity by TLC on silica gel or GF-254 plates and their spots were located under UV lamp or by iodine vapours or by spraying with Dragendorff's reagent. UV absorption spectra (λ_{max} , nm) were recorded on Perkin-Elmer Lambda-15 and Hitachi-320 model. IR spectra ($\tilde{\nu}_{\text{max}}$, cm^{-1}) were recorded on Perkin-Elmer 157 or Acculab 1 model. ^1H NMR spectra (δ , ppm) were recorded on Perkin-Elmer R-32 or EM360L instruments using TMS as internal reference. Mass spectra were run on Jeol JMS-D 300 using direct inlet system.

2,4-Dimethoxy-5-methoxymethyl-6-methylpyrimidine (*II*)

A solution of *I* (ref.^{6a}) (5.0 g, 23.6 mmol) in dry methanol (20 ml) was added slowly to NaOMe (3.8 g, 70.9 mmol). The reaction mixture was refluxed for 0.5 h and cooled. The separated solid was filtered and washed with ether (50 ml). The combined filtrate was evaporated under reduced pressure to give 3.4 g (73%) of pyrimidine *II*, as an oil. UV spectrum (MeOH): 219, 259. ^1H NMR spectrum (CDCl_3): 2.36 s, 3 H (6- CH_3); 3.25 s, 3 H (5- CH_2OCH_3); 3.87 s, 6 H (4- OCH_3 and 2- OCH_3); 4.30 s, 2 H (5- CH_2). Mass spectrum (*m/z*): 198 (M^+). For $\text{C}_9\text{H}_{14}\text{N}_2\text{O}_3$ (198.2) calculated: 54.53% C, 7.11% H, 14.3% N; found: 54.49% C, 7.30% H, 14.02% N.

1-(2-Benzoyloxyethoxymethyl)-4-methoxy-5-methoxymethyl-6-methyl-2(*H*)-pyrimidinone (*IVa*)

2-Benzoyloxy-1-chloromethoxyethane⁸ (*III*) (4.6 g, 21.2 mmol) in CH_2Cl_2 (20 ml) was slowly added to the mixture of *II* (3.5 g, 17.7 mmol), Na_2CO_3 (2.3 g, 21.2 mmol) in CH_2Cl_2 (100 ml). The reaction mixture was stirred at room temperature for 4 h. The resulting mixture was filtered and the residue washed with CH_2Cl_2 (100 ml). The filtrate was evaporated under reduced pressure to give a syrup which was chromatographed on a SiO_2 column. Elution with benzene-ethyl acetate (8 : 2) and evaporation of the appropriate fractions gave 3.3 g (52%) of pyrimidinone *IVa*, m.p. 110 °C (C_6H_6). UV spectrum (MeOH) or (MeOH + HCl): 221, 274; (MeOH + NaOH): 211, 275; ^1H NMR spectrum (CDCl_3): 2.35 s, 3 H (6- CH_3); 3.21 s, 3 H (5- CH_2OCH_3); 3.86 s, 3 H (4- OCH_3); 3.92 m, 2 H (3'-H), 4.05 s, 2 H (5- CH_2); 4.30 m, 4 H (4'-H); 5.45 s, 2 H (1'-H); 750 m, 3 H (C_6H_5); 7.87 – 8.00 m, 2 H (C_6H_5). Mass spectrum (*m/z*): 362 (M^+).

1-(2-Benzoyloxyethoxymethyl)-4-methoxy-5-methoxymethyl-6-methyluracil (*Va*)

A solution of *IVa* (2.0 g, 5.5 mmol) in CHCl_3 (325 ml) was saturated with HCl at 10 °C and the reaction mixture was allowed to stand at room temperature for 10 h. The hydrogen chloride and CHCl_3 was removed under reduced pressure and the residue was chromatographed on SiO_2 column. Elution with benzene-ethyl acetate (8 : 2) gave 1.5 g (78%) of methyl uracil *Va*, m.p. 106 °C. IR spectrum (KBr): 1700, 1660 (C=O). UV spectrum (MeOH) or (MeOH + HCl): 224, 265; (MeOH + NaOH): 211, 265. ^1H NMR spectrum (CDCl_3): 2.34 s, 3 H (6- CH_3); 3.25 s, 3 H (5- CH_2OCH_3); 3.87 m, 2 H (3'-H); 4.14 s, 2 H (5- CH_2); 4.32 m, 2 H (4'-H); 5.35 s, 2 H (1'-H); 7.30 – 7.50 m, 3 H (C_6H_5); 7.84 – 8.00 m, 2 H (C_6H_5). Mass spectrum (*m/z*): 348 (M^+).

1-(2-Hydroxyethoxymethyl)-4-methoxy-5-methoxymethyl-6-methyl-2(*H*)-pyrimidinone (*IVb*)

A mixture of *IVa* (0.6 g, 1.7 mmol) and MeOH-NH₃ (20 ml) was kept at 0 °C for 24 h. The excess of MeOH and NH₃ was removed under reduced pressure. The product was chromatographed on a SiO_2 column. Elution of the column with CHCl_3 -MeOH (98 : 2) and evaporation of the appropriate fractions furnished 0.13 g (30%) of the title compound, as an oil. ^1H NMR spectrum (CDCl_3): 2.35 s, 3 H (6- CH_3); 3.26 s, 3 H (5- CH_2OCH_3); 3.64 s, 4 H (3'-H and 4'-H); 3.89 s, 3 H (4- OCH_3); 4.18 s, 2 H (5- CH_2); 5.45 s,

2 II (1'-II). Mass spectrum (*m/z*): 258 (M⁺). For C₁₁H₁₈N₂O₅ (258.3) calculated: 51.15% C, 7.02% H, 10.84% N; found: 51.31% C, 6.82% H, 10.64% N.

1-(2-Hydroxyethoxymethyl)-5-methoxymethyl-6-methyluracil (Vb)

Title compound was prepared from *Va* (1.0 g, 2.9 mmol) and MeOH-NH₃ (40 ml), by the method described for *IVb*. Methyluracil *Vb* was obtained in 54% yield, m.p. 110 °C (ethyl acetate-hexane). ¹H NMR spectrum (CDCl₃): 2.36 s, 3 H (6-CH₃); 3.26 s, 3 H (5-CH₂OCH₃); 3.63 s, 4 H (3'-H and 4'-H); 4.20 s, 2 H (5-CH₂); 5.31 s, 2 H (1'-H). Mass spectrum (*m/z*): 244 (M⁺). For C₁₀H₁₆N₂O₅ (244.3) calculated: 49.17% C, 6.60% H, 11.47% N; found: 49.13% C, 6.32% H, 11.49% N.

1-(2-Hydroxyethoxymethyl)-5-methoxymethyl-6-methylcytosine (VIa)

A mixture of *IVa* (1.0 g, 2.8 mmol) and MeOH-NH₃ (30 ml) was heated in a steel bomb at 100 °C for 16 h. The excess of MeOH and NH₃ was evaporated under reduced pressure and the residue was chromatographed on a SiO₂ column. Elution of the column with CHCl₃-MeOH (9 : 1) and evaporation of the appropriate fractions afforded 0.54 g (80%) of cytosine *VIa*, m.p. 187 °C. IR spectrum (KBr): 3 400 (OH, NH₂). ¹H NMR spectrum (CDCl₃ + (CD₃)₂SO): 2.34 s, 3 H (6-CH₃); 3.22 s, 3 H (5-CH₂OCH₃); 3.50 s, 4 H (3'-H and 4'-H); 4.16 s, 2 H (5-CH₂); 5.31 s, 2 H (1'-H); 5.51 s, 1 H (5-H); 6.70 bs, 2 H (exchanges with D₂O, NH₂). Mass spectrum (*m/z*): 243 (M⁺). For C₁₀H₁₇N₃O₄ (243.3) calculated: 49.37% C, 7.05% H, 17.27% N; found: 49.54% C, 7.12% H, 17.61% N.

This procedure was also applied for the preparation of 1-allyl-5-methoxymethyl-6-methylcytosine (*IXa*) and 1-(2,3-dihydroxypropyl)-5-methoxymethyl-6-methylcytosine (*XIIa*), were prepared by the same procedure starting from 1-substituted-4-methoxy-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinones (*VII* and *X*). Characteristic data of compounds *IXa* and *XIIa* are listed in Table I.

1-(2-Hydroxyethoxymethyl)-4-methylamino-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (VIIb)

A mixture of *IVa* (0.9 g, 2.2 mmol) and CH₃NH₂ (10 ml of 33% aqueous solution) was heated at 100 °C for 8 h. The excess of CH₃NH₂ was removed under reduced pressure. The residue was coevaporated with EtOH (50 ml). The product thus obtained was chromatographed on a SiO₂ column, elution with CHCl₃-MeOH (8 : 2) and evaporation of the appropriate fractions gave 0.4 g (68%) of compound *VIIb*, as an oil. ¹H NMR spectrum (CDCl₃): 2.32 s, 3 H (6-CH₃); 2.82 d, 3 H (NHCH₃); 3.24 s, 3 H (5-CH₂OCH₃); 3.42 s, 4 H (3'-H and 4'-H); 4.22 s, 2 H (5-CH₂); 5.38 s, 2 H (1'-H); 6.20 bs, 1 H (exchanges with D₂O, NH). Mass spectrum (*m/z*): 257 (M⁺). For C₁₁H₁₉N₃O₄ (257.3) calculated: 51.35% C, 7.44% H, 16.33% N; found: 51.26% C, 7.51% H, 16.20% N.

Similarly 1-(2-hydroxyethoxymethyl)-4-ethylamino-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*VIIc*), 1-allyl-4-alkylamino-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*IXb* - *IXc*) and 4-alkylamino-1-(2,3-dihydroxypropyl)-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*XIIb* - *XIIc*) were prepared from corresponding 1-(benzoylethoxymethyl/allyl/dihydroxypropyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*IVa*, *VIIa* and *X*) by reacting with methylamine and ethylamine solutions. Characteristic data of compounds *VIIc*, *IXb* - *IXc* and *XIIb* - *XIIc* are presented in Table I.

1-Allyl-4-methoxy-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*VII*)

A mixture of *I* (5.0 g, 25.3 mmol), allyl bromide (3.7 g, 30.3 mmol) anhydrous Na₂CO₃ (3.2 g, 30.3 mmol) and CH₃CN (100 ml) was refluxed with the exclusion of moisture at 140 °C bath for 8 h. The resulting mixture was cooled, filtered and the solid was washed with CH₃CN (100 ml). The filtrate and washings were combined and evaporated under reduced pressure to give a syrup which was chromatographed on a

TABLE I
Physical and spectral data of cytosines *IXa*, *XIIa* and 4-alkylaminopyrimidinones *Vic*, *IXb*, *IXc*, *XIIb*, *XIIc*

Compound	M. p., °C	Yield, %	Formula (M. w.)	Calculated/Found		Spectra data
				% C	% H	
<i>Vic</i>	oil 56	C ₁₂ H ₂₁ N ₃ O ₄ (271.3)	53.12 53.39	7.80 7.76	15.48 15.31	MS (<i>m/z</i>): 271 (M ⁺). ¹ H NMR (CDCl ₃): 1.10 t, 3 H (4-NHCH ₂ CH ₃); 3.34 – 3.50 m, 2 H (4-NHCH ₂); 5.40 s, 2 H (1'-H); 6.10 bs, 1 H (exchanges with D ₂ O, NH)
<i>IXa</i>	157 – 159 ^a 65	C ₁₀ H ₁₅ N ₃ O ₂ (209.2)	57.59 57.26	7.22 7.32	20.08 19.62	MS (<i>m/z</i>): 209 (M ⁺). ¹ H NMR (CDCl ₃): 4.45 – 4.55 m, 2 H (1'-H); 5.00 – 5.15 m, 2 H (3'-H); 5.60 – 5.80 m, 1 H (2'-H); 6.50 bs, 2 H (D ₂ O exchangeable, NH ₂)
<i>IXb</i>	119 – 121 ^a 87	C ₁₁ H ₁₇ N ₃ O ₂ (223.3)	59.17 59.39	7.67 7.72	18.82 18.94	MS (<i>m/z</i>): 223 (M ⁺). ¹ H NMR (CDCl ₃): 2.95 bs, 3 H (NHCH ₃); 4.50 – 4.65 m, 2 H (1'-H); 6.15 bs, 1 H (D ₂ O exchangeable, NH)
<i>IXc</i>	102 – 104 ^a 86	C ₁₂ H ₁₉ N ₃ O ₂ (237.3)	60.77 60.79	8.07 8.12	17.70 17.49	MS (<i>m/z</i>): 237 (M ⁺). ¹ H NMR (CDCl ₃): 1.15 t, 3 H (4-NHCH ₂ CH ₃); 3.35 – 3.56 m, 2 H (4-NHCH ₂); 4.50 – 4.62 m, 2 H (1'-H); 6.04 bs, 1 H (D ₂ O exchangeable, NH)
<i>XIIa</i>	171 – 173 ^b 74	C ₁₀ H ₁₇ N ₃ O ₄ (243.3)	49.37 49.56	7.04 7.29	17.27 17.23	MS (<i>m/z</i>): 243 (M ⁺). ¹ H NMR (CDCl ₃ + (CD ₃) ₂ SO): 3.30 – 3.45 m, 2 H (1'-H); 3.62 – 3.95 m, 3 H (2'-H and 3'-H); 6.50 bs, (D ₂ O exchangeable, NH ₂)
<i>XIIb</i>	157 – 159 ^b 68	C ₁₁ H ₁₉ N ₃ O ₄ (257.3)	51.35 51.52	7.44 7.30	16.33 16.50	MS (<i>m/z</i>): 257 (M ⁺). ¹ H NMR (CDCl ₃ + (CD ₃) ₂ SO): 2.88 d, 3 H (4-NHCH ₃); 3.22 – 3.50 m, 2 H (1'-H); 6.20 bs, 1 H (D ₂ O exchangeable, NH ₂)
<i>XIIc</i>	99 – 101 ^a 69	C ₁₂ H ₂₁ N ₃ O ₄ (271.3)	53.12 53.26	7.80 7.82	15.48 15.66	MS (<i>m/z</i>): 271 (M ⁺). ¹ H NMR (CDCl ₃): 1.10 t, 3 H (4-NHCH ₂ CH ₃); 3.30 – 3.55 m, 4 H (1'-H and 4-NHCH ₂); 6.08 bs, 1 H (D ₂ O exchangeable, NH ₂)

^a Ethyl acetate–hexane; ^b methanol–water.

SiO_2 column, elution with $\text{C}_6\text{H}_6\text{-EtOAc}$ (8 : 2) and evaporation of the appropriate fractions gave 3.1 g (55%) of pyrimidinone *VII*, m.p. 106 °C. UV spectrum λ_{max} (MeOH): 205, 271; ^1H NMR spectrum (CDCl_3): 2.35 s, 3 H (6-CH₃); 3.28 s, 3 H (5-CH₂OCH₃); 3.90 s, 3 H (4-OCH₃); 4.22 s, 2 H (5-CH₂); 4.50 – 4.65 m, 2 H (1'-H); 5.02 – 5.25 m, 2 H (3'-H); 5.65 – 6.06 m, 1 H (2'-H). Mass spectrum (*m/z*): 224 (M^+); for $\text{C}_{11}\text{H}_{16}\text{N}_2\text{O}_3$ calculated (224.3).

1-Allyl-5-methoxymethyl-6-methyluracil (*VIII*)

A mixture of pyrimidinone *VII* (0.5 g, 2.2 mmol) and 2 M aqueous NaOH (15 ml) was stirred at 50 °C for 24 h. The resulting mixture was cooled, neutralized with AcOH and concentrated under reduced pressure to dryness. The product was dissolved in H_2O (100 ml), extracted with EtOAc (250 ml), the extracts dried with Na_2SO_4 and concentrated in vacuo to dryness. The product was crystallized from Et_2O ; yield 0.24 g (51%), m.p. 140 °C. ^1H NMR spectrum (CDCl_3): 2.37 s, 3 H (6-CH₃); 3.27 s, 3 H (5-CH₂OCH₃); 4.25 s, 2 H (5-CH₂); 4.40 – 4.53 m, 2 H (1'-H); 5.10 – 5.25 m, 2 H (3'-H); 5.60 – 6.00 m, 1 H (2'-H). Mass spectrum (*m/z*): 210 (M^+). For $\text{C}_{10}\text{H}_{14}\text{N}_2\text{O}_3$ (210.2) calculated: 57.12% C, 6.71% H, 13.32% N; found: 57.39% C, 6.82% H, 13.45% N.

1-(2,3-Dihydroxypropyl)-4-methoxy-5-methoxymethyl-6-methyl-2(1*H*)-pyrimidinone (*X*)

Osmium tetroxide (0.08 g, 0.3 mmol) was added to the stirred solution of pyrimidinone *VII* (5.0 g, 22.3 mmol) and NaClO_3 (3.09 g, 29.0 mmol) in 50% aqueous MeOH (200 ml). Stirring was continued for 24 h. The resulting mixture was filtered through Celite pad and the solid was washed with H_2O (100 ml). The filtrate and washings were combined and solvent removed under reduced pressure to dryness. The crude product was chromatographed on a SiO_2 column, elution $\text{CHCl}_3\text{-MeOH}$ (9 : 1) and evaporation of the appropriate fractions gave 3.8 g (66%) of dihydroxypropyl *X*, m.p. 96 °C ethyl acetate–hexane). IR spectrum (KBr) : 3 300 (OH), 1 610 (C=O). UV spectrum λ_{max} (MeOH): 205, 279; (MeOH–NaOH): 208, 278. ^1H NMR spectrum (CDCl_3): 2.41 s, 3 H (6-CH₃); 3.27 s, 3 H (5-CH₂OCH₃); 3.45 – 3.65 m, 2 H (1'-H), 3.85 s, 3 H (4-OCH₃); 3.85 – 4.06 m, 3 H (2'-H and 3'-H); 4.20 s, 2 H (5-CH₂). Mass spectrum (*m/z*): 258 (M^+). For $\text{C}_{11}\text{H}_{18}\text{N}_2\text{O}_5$ (258.3) calculated: 51.15% C, 7.02% H, 10.85% N; found: 51.36% C, 7.37% H, 11.09% N.

1-(2,3-Dihydroxypropyl)-5-methoxymethyl-6-methyluracil (*XI*)

A mixture of *X* (0.5 g, 1.9 mmol) and 2 M aqueous NaOH (30 ml) was stirred at room temperature for 24 h. The resulting mixture was worked up as described for *VIII*. The crude product was chromatographed on a SiO_2 column, elution with $\text{CHCl}_3\text{-MeOH}$ (8 : 2) and evaporation of the appropriate fractions gave 0.23 g (48%) of methyluracil *XI*, m.p. 130 °C. IR spectrum (KBr): 3 240 (OH), 1 660 (C=O). UV spectrum λ_{max} (MeOH): 212, 270; (MeOH–NaOH): 212, 272. ^1H NMR spectrum (CDCl_3 + $(\text{CD}_3)_2\text{SO}$): 2.33 s, 3 H (6-CH₃); 3.20 s, 3 H (5-CH₂OCH₃); 3.30 – 3.45 m, 2 H (1'-H); 3.74 – 4.05 m, 3 H (2'-H and 3'-H); 4.15 s, 2 H (5-CH₂). Mass spectrum (*m/z*): 244 (M^+). For $\text{C}_{10}\text{H}_{16}\text{N}_2\text{O}_5$ (244.3) calculated: 49.17% C, 6.60% H, 11.47% N; found: 49.32% C, 6.84% H, 11.41% N.

I am grateful to Dr D. S. Bhakuni (C.D.R.I., Lucknow) for his constructive discussion through out the course of this work. I am also thankful to the Scientist in-Charge and Director of C. D. R. I. for providing me necessary facilities for this work. Financial support from Council of Scientific and Industrial Research Institute New Delhi is gratefully acknowledged. Thanks are due to R.S.I.C staff and Dr M. N. Joshi C. D. R. I. Lucknow, for spectral data and preliminary screening of the compounds.

REFERENCES

1. Schaeffer H. J., Beauchamp L. M., de Miranda P., Elion G. B., Bauer D. J., Collins P.: *Nature* **272**, 583 (1978).
2. de Clercq E., Descamps J., De Somer P.: *Science* **200**, 563 (1978).
3. Niedzwicki J. G., Chu S. H., El Kouni M. H., Rowe E. C., Cha S.: *Biochem. Pharmacol.* **13**, 1857 (1982); Niedzwicki J. G., El Kouni M. H., Chu S. H., Cha S.: *Biochem. Pharmacol.* **32**, 399 (1983); Siegel S. A., Lin T. S.: *Biochem. Pharmacol.* **34**, 1121 (1985).
4. Baker B. R., Kawazu M., Santi D. V., Schwan T. J.: *J. Med. Chem.* **10**, 304 (1967).
5. Singh P. K., Saluja S., Pratap R., George C. X., Bhakuni D. S.: *Indian. J. Chem.*, B **25**, 823 (1988).
6. a) Bowman A.: *J. Chem. Soc.* **1937**, 494; b) Todd A. R., Bergel F., Conrat H. L. F., Jacob A.: *J. Chem. Soc.* **1936**, 1601.
7. Donleavy J. J., Kise M. A.: *Org. Synth.* **2**, 422 (1948); Cline R. E., Fink R. M., Fink K.: *J. Am. Chem. Soc.* **81**, 2521 (1959); Bhat C. C., Munson H. R. in: *Synthetic Procedures in Nucleic Acid Chemistry* (W. W. Zorbach and R. S. Tipson, Eds), p. 83. Wiley, New York 1968.
8. Schaeffer H. J., Gurwara S., Vince R., Bittner S.: *J. Med. Chem.* **14**, 367 (1971).
9. Abrams H. M., Ho L., Chu S. H.: *J. Heterocycl. Chem.* **18**, 947 (1981).
10. Prystaš M., Šorm F.: *Collect. Czech. Chem. Commun.* **34**, 2316 (1969).
11. Holý A.: *Collect. Czech. Chem. Commun.* **40**, 187 (1975).
12. Winkley M. W., Robins R. K.: *J. Org. Chem.* **33**, 2822 (1968).
13. Fox J. J., Shugar D.: *Biochim. Biophys. Acta* **9**, 369 (1952).
14. Pandey V. K., Misra D., Joshi M. N., Chandra K.: *Pharmacol. Res. Commun.* **20**, 153 (1988).